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ABSTRACT
An algorithm is presented for finding the k nearest neighbors in a
spatial network in a best-first manner using network distance. The
algorithm is based on precomputing the shortest paths between all
possible vertices in the network and then making use of an encod-
ing that takes advantage of the fact that the shortest paths from
vertex u to all of the remaining vertices can be decomposed into
subsets based on the first edges on the shortest paths to them from
u. Thus, in the worst case, the amount of work depends on the
number of objects that are examined and the number of links on the
shortest paths to them from q, rather than depending on the number
of vertices in the network. The amount of storage required to keep
track of the subsets is reduced by taking advantage of their spatial
coherence which is captured by the aid of a shortest path quadtree.
In particular, experiments on a number of large road networks as
well as a theoretical analysis have shown that the storage has been
reduced from O(N3) to O(N1.5) (i.e., by an order of magnitude
equal to the square root). The precomputation of the shortest paths
along the network essentially decouples the process of computing
shortest paths along the network from that of finding the neighbors,
and thereby also decouples the domain S of the query objects and
that of the objects from which the neighbors are drawn from the
domain V of the vertices of the spatial network. This means that as
long as the spatial network is unchanged, the algorithm and under-
lying representation of the shortest paths in the spatial network can
be used with different sets of objects.
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1. INTRODUCTION
The growing popularity of online mapping services such as

Google Maps and Microsoft MapPoint has led to an interest in
responding in real time to queries such as finding shortest routes
between locations along a spatial network as well as finding near-
est objects from a set S (e.g., gas stations, markets, and restaurants)
where the distance is measured in terms of paths along the network.
Elements of S are usually constrained to lie on the network or at the
minimum to be easily accessible from the network.

The online nature of these services means that responses must
be generated in real time. For example, in Google Maps, once a
shortest path from A to B has been obtained which passes through
C, users can simply change the query to find the shortest path from
A to B which is constrained to pass through D instead of C and the
new shortest path is presented to the user instantly. Requiring that
the result be obtained in real time (or almost real time) precludes
the use of conventional algorithms that are graph-based (e.g., the
INE and IER methods [21] and improvements on them [2]) which
usually incorporate Dijkstra’s algorithm [4] in at least some parts
of the solution [25]. In particular, given a source vertex q (i.e.,
query vertex) and a connected graph G (i.e., the spatial network),
Dijkstra’s algorithm finds the shortest path (and hence the shortest
distance along the network) to every vertex in the network where
the paths are reported in order of increasing distance from q.

The problem with an approach that uses Dijkstra’s algorithm is
that it must visit every vertex that is closer to q via the shortest
path from q than the vertices associated with the desired objects.
Thus, the amount of work often depends on the number of vertices
in the network whereas our goal is for the amount of work in the
worst case to depend on the number of objects that are examined
and on the number of links on the shortest paths to them from q.
Thus, Dijkstra’s algorithm may visit many vertices before reaching
one which coincides with or is near one of the objects in which we
are interested. In particular, it is not uncommon for Dijkstra’s al-
gorithm to visit a very large number of the vertices of the network
in the process of finding the shortest path between vertices that are
reasonably far from each other in terms of network hops. For ex-
ample, Figure 1(a) shows the vertices that would be visited when
finding the shortest path from the vertex marked by X to the vertex
marked by V in a spatial network corresponding to Silver Spring,
MD. Here we see that in the process of obtaining the shortest path
from X to V of length 75 edges, 75.4% of the vertices in the net-
work are visited (i.e., 3,191 out of a total of 4,233 vertices).
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(a) (b)

Figure 1: (a) A map of Silver Spring, MD, and the ver-
tices, highlighted by circles, that are visited by Dijkstra’s
algorithm in determining the shortest path from X to V,
and (b) its partition into regions ri such that the shortest
path from X to a vertex in ri passes through the same
vertex among the six vertices that are adjacent to X (i.e.,
the shortest-path map of X).

The algorithm that we describe satisfies our goals and is based on
the observation that the spatial network is usually static (e.g., a road
network) whereas the objects which are located on it are far more
likely to change, or at least the domain from which the objects are
drawn can change from query to query, while the underlying net-
work does not. For example, the objects in S represent entities such
as restaurants, hotels, gas stations, and so on. In fact, even if the do-
main from which the objects are drawn does not change, the values
of the attributes of the objects may change (e.g., the type of food
served in a restaurant or the price per gallon of gas at a gas station).
Our algorithm is based on precomputing the shortest paths between
all possible vertices in the network and then making use of an en-
coding that takes advantage of the fact that the shortest paths from
vertex u to all remaining vertices can be decomposed into subsets
based on the first edges on the shortest paths to them from u [27,
31], and represents the subsets using a shortest path quadtree which
captures their spatial coherence. However, the algorithm does not
use the actual distances and thus there is no need to store them. Ex-
periments on a number of large road networks have shown that use
of the shortest path quadtree leads to a significant reduction of the
storage requirements from O(N3) to O(N1.5) (i.e., by an order of
magnitude equal to the square root).

The advantage of our algorithm is that it decouples the process
of computing shortest paths along the network from that of finding
the neighbors, and thereby also decouples the domain S of the query
objects and that of the objects from which the neighbors are drawn
from the domain V of the vertices of the spatial network. In other
words, there is no need to recompute the shortest paths each time
there are changes in q or S. This differentiates our approach from
other approaches such as those proposed by Papadias et al. [21],
as well as those of Cho and Chung [2], and Kolahdouzan and Sha-
habi [15], which must compute the shortest paths anew each time
there are changes in q or S, which, unfortunately, may be quite fre-
quent. Note though that Hu et al. [12] use a related approach to ours
where for each vertex v of the spatial network T , they associate (1)
rough distance estimates of the network distance from v to each
object o in S and (2) the first link on the shortest path from v to o.
However, the drawback of this approach is the lack of decoupling
of the objects from the spatial network and the sheer volume of the
data that must be stored for each pair (v,o), whereas our approach
merely requires a spatial index for each different object set S, and
one shortest path quadtree for each v.

The algorithm presented in this paper differs from the algorithm
in [27] by being a k nearest neighbor algorithm rather than an in-
cremental algorithm [27] which means that the k results need not
be obtained in increasing order of network distance, and thus the
storage requirements are also reduced especially for small values

of k, which is the most common situation. It is also novel in being
the first algorithm to make use of an estimate of the maximum of
the network distance at which the kth nearest neighboring object
can be found. Another contribution of this paper is the presentation
of a detailed analysis and proofs of the storage requirements of this
approach which involves more precise definitions of the underly-
ing quadtree representations that enable it to achieve these results.
Finally, we provide a detailed experimental evaluation as well as a
comparison with related algorithms based on use of Dijkstra’s algo-
rithm. This experimental evaluation also demonstrates for the first
time that use of the shortest path quadtree leads to a reduction of
the storage requirements from O(N3) to O(N1.5) (i.e., by an order
of magnitude equal to the square root, which is quite substantial).

The rest of this paper is organized as follows. Section 2 presents
our algorithm, while Section 3 analyzes its execution time and
space requirements. Section 4 contains a detailed experimental
evaluation of our algorithm and variants thereof as well as an ex-
perimental comparison with approaches based on Dijkstra’s algo-
rithm. Section 5 contains some concluding remarks and provides
directions for future research.

2. BEST-FIRST K NEAREST NEIGHBOR
ALGORITHM

Nearest neighbor finding is achieved by application of either a
depth-first or a best-first algorithm. These algorithms are generally
applicable to any index based on hierarchical clustering. The idea
is that the data is partitioned into clusters which are aggregated to
form other clusters, with the total aggregation being represented as
a tree. The number k of neighbors that are sought is usually known
in advance in which case the algorithms keep track of the set L of
the k nearest neighbors found so far and update L as is appropriate.
The most common strategy for nearest neighbor finding employs
the depth-first branch and bound method (e.g., [6, 22]). The depth-
first algorithm explores the elements of the search hierarchy in an
order that is a result of performing a depth-first traversal of the hi-
erarchy using the distance Dk from the query object q to the current
kth-nearest object to prune the search.

An alternative strategy is the best-first method (e.g., [9, 10])
which explores the nonobject elements of the search hierarchy in
increasing order of their distance from q (hence the name “best-
first”). This is achieved by storing the nonobject elements of the
search hierarchy in a priority queue in this order. In addition, some
of the best-first algorithms (e.g., [9, 10]) also store the objects in
the same priority queue thereby enabling these algorithms to report
the neighbors 1-by-1, and thus there is no need for k to be known
in advance, as is the case in the depth-first approach, nor is there
a need for L. This also enables the algorithms to halt once the de-
sired number k of neighbors has been determined. On the other
hand, variants can also be constructed that use L to keep track of
the k nearest objects [10] as we do here.

The best-first approach’s advantage is avoiding having to visit
nonobject elements that will eventually be determined to be too far
from q due to poor initial estimates of Dk, which is possible in
the depth-first approach, thereby not needing to traverse the entire
search hierarchy. On the other hand, the advantage of the depth-first
approach over the best-first approach is that the amount of storage
is bounded by k plus the maximum depth of the search hierarchy
in contrast to possibly having to keep track in the priority queue of
all nonobjects (and thus all the objects) if all their distances from q
are approximately the same. Nevertheless, studies have shown the
best-first approach to be better than the depth-first approach for k
fixed [10], and the adaptation of the best-first approach to spatial
networks is the subject of this paper.
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In the rest of this section we describe the KNEARESTSPATIAL-
NETWORK algorithm. It assumes that the underlying graphs that
form the basis of the spatial networks are connected planar graphs.
This is not an unreasonable assumption as road networks are con-
nected (at least within a landmass such as a continent), although
they don’t have to be planar as can be seen by the possibility of
the presence of tunnels and bridges. We do not dwell on such sit-
uations here although we do revisit it briefly in Section 5. It also
assumes that the shortest paths between all pairs of vertices u and
v in V in the graph G = (V,E) have been computed using either
Dijkstra’s algorithm or any of the other approaches that have been
proposed to do so that involve precomputation to speed up the pro-
cess of shortest path computation (e.g., [5, 8, 14, 32] as well as
the comparative study by Zhang and Noon [32]). Unfortunately,
given a spatial network with N vertices, there are O(N2) possible
paths and the cost of storing all possible shortest paths takes O(N3)
space, which is prohibitive. Instead, we store partial information
about each shortest path. In particular, we only store the identity of
the first edge along the shortest path from source vertex u to des-
tination vertex v, which enables the shortest path between u and
v to be constructed in time proportional to the length of the path
by repeatedly following the edges that make up the shortest path
as they are discovered. The shortest paths from v to all remaining
vertices can be decomposed into subsets based on the identity of
the first edges to them from v and the decomposition of the under-
lying space that is induced by these subsets is stored in a shortest
path quadtree which is discussed in Section 2.1, and which experi-
mental results discussed in Section 4 lead to a reduction in storage
costs from O(N3) to O(N1.5). The workings of KNEARESTSPA-
TIALNETWORK are presented in Section 2.2.

2.1 Shortest Path Quadtrees
The simplest way of representing the shortest path information in

the manner described above is to maintain an array A of size N×N
so that element A[u,v] contains the first vertex on the shortest path
from u to v. In this case, finding the shortest path reduces to re-
trieving the elements A[ui,v], where u1 = A[u,v] and, in general,
ui+1 = A[ui,v]. An alternative representation makes use of N adja-
cency lists, one for each vertex ui. In particular, the adjacency list
for vertex ui is a set of Mui elements, where Mui is the out degree of
ui and there is one element for each vertex wui j (1≤ j ≤Mui ) such
that there exists an edge eui j from ui to wui j. The element of the
adjacency list corresponding to wui j contains all vertices v whose
shortest path from ui passes through vertex wui j. Note that we as-
sume that the spatial network is connected, and thus every vertex
is in one of the elements of the adjacency list of ui. Moreover, we
also assume that the shortest path from ui to each vertex is unique,
thereby making the elements of the adjacency list of ui disjoint.

There are several drawbacks to the use of adjacency lists. The
first is the absence of an index which means that searches through
the elements of the list associated with vertex ui for the one that
contains v must make use of sequential search, which can be costly.
The second is the space required for storing the lists as each list
has O(N) elements. The space requirements can be reduced by
taking advantage of the fact that the vertices that are members of a
particular element of an adjacency list have some spatial coherence
in the sense that they are likely to be in close spatial proximity.
This results in conceptually viewing the elements of each adjacency
list as regions, and leads to replacing the adjacency list by a map,
termed the shortest-path map, so that we have one shortest-path
map for each vertex in the spatial network. In particular, given
vertex ui, the shortest-path map mui partitions the underlying space
into Mui regions, where Mui is the out degree of ui and there is one
region rui j for each vertex wui j (1≤ j≤Mui ) that is connected to ui

by an edge eui j . Region rui j spans the space occupied by all vertices
v such that the shortest path from ui to v contains edge eui j (i.e., the
shortest path makes a transition through vertex wui j). Region rui j
is bounded by a subset of the edges of the shortest paths from ui to
the vertices within it. Note that rui j does not include ui nor does
it include edge eui j. We assume that the spatial network is planar
which means that the regions that make up mui are disjoint (they are
also shown to be connected in Section 3). For example, Figure 1(b)
is such a partition for the vertex marked by X in the road network
of Figure 1(a) where we use different colors (i.e., shades of gray)
to denote the different regions.

The advantage of grouping the vertices on the basis of the regions
in which they lie and identifying each region by the first vertex on
the shortest path into it from vertex ui is that we can make use of a
point location operation to find the region that contains the destina-
tion vertex. This also means that we can find the shortest path to a
group of vertices that form a region, which is not possible or easy
when using the array or adjacency list representations, respectively.
Point location is sped up by imposing a spatial index on the regions.
In essence, there are two types of a spatial index: one based on an
object hierarchy such as an R-tree and one based on a disjoint de-
composition of the underlying space such as one of a number of
quadtree variants (e.g., [25, 29]).

An object hierarchy is usually accompanied by a hierarchy of
bounding boxes to facilitate execution of a point location query
by enabling the filtering of obviously wrong results. The bound-
ing boxes result in a nondisjoint decomposition of the underlying
space which means that the location occupied by a particular vertex
may be contained in several bounding boxes. Thus, given a source
vertex ui and a destination vertex v, the only way to determine the
actual bounding box bui j , and hence the region rui j corresponding
to the first vertex on the shortest path from ui to v, is to associate
the relevant vertices with bui j which defeats the rationale for not
using the adjacency list method. The alternative is to have as many
choices for the first vertex on the shortest path to v as there are
bounding boxes that contain v. This has the effect of making the
process of obtaining the actual shortest path from ui to v consid-
erably more expensive as it can no longer be determined in time
proportional to the number of edges that make up the path. The
result is that we are actually making use of a concept similar to the
landmarks employed by several researchers (e.g., [8, 14, 30]) as
an alternative to Dijkstra’s algorithm to compute the shortest path
between two vertices. In fact, this is indeed the motivation for the
method of Wagner and Willhalm [31] where the object hierarchy
consists of bounding boxes. Figure 2(a) shows the result of using
minimum bounding boxes to approximate the regions in the parti-
tion for the vertex marked by X in the road network of Figure 1(a).
Notice that the bounding boxes intersect, which means that vertices
in the intersecting regions have more than one candidate next vertex
for the shortest path to them from X.

(a) (b)

Figure 2: (a) Result of using minimum bounding boxes
to approximate regions in the partition for vertex X in the
road network of Figure 1(b), and (b) leaf blocks in the
shortest-path quadtree for regions of the same partition.
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In contrast, Sankaranarayanan et al. [27] propose the use of a
spatial index based on a disjoint decomposition of the underlying
space. In particular, they represent the regions that make up the
shortest-path map mui using a variant of the region quadtree [25],
termed a shortest-path quadtree, where there are Mui different dis-
joint regions rui j all stored in the region quadtree sui . Each region
rui j consists of the disjoint quadtree blocks that make it up. Each
of the quadtree blocks records the identity of the region of which
it is a member. For example, Figure 2(b) is the block decomposi-
tion induced by the shortest-path quadtree on the shortest-path map
given by Figure 1(b). As we pointed out earlier, the advantage of
representations that make use of a disjoint decomposition of the un-
derlying space, such as the region quadtree, is that once we locate
the block containing the destination vertex, we know what region it
is in and hence the edge emanating from the vertex whose shortest-
path quadtree we are processing. In particular, given source vertex
u, destination vertex v, the shortest-path map mu and shortest-path
quadtree su associated with u, the next vertex t in the shortest path
from u to v is the vertex w j associated with the quadtree block of
su in region r j of mu that contains v. The complete path from u
to v is obtained by repeating the process, successively replacing u
with t and replacing u’s shortest-path quadtree with that of t, until
u equals v.

For example, consider the simple road network given in Fig-
ure 3(a) where we want to find the shortest path from vertex s to ver-
tex d, and the shortest-path quadtree for s is given by Figure 3(b).
Looking up vertex d in the shortest-path quadtree of s determines
that d is in the region of the quadtree corresponding to the edge
from vertex s to t. Therefore, the shortest-path from s to d passes
through t. Next, we obtain the shortest-path quadtree of t which
is given by Figure 3(c). Looking up vertex d in the shortest-path
quadtree of t determines that d is in the region of the quadtree cor-
responding to the edge from vertex t to u. This process is continued
until encountering an edge to vertex d.

s

d

s

d

t

d

t
u

(a) (b) (c)

Figure 3: (a) Example road network, (b) the shortest-
path quadtree of vertex s, and (c) the shortest-path
quadtree of vertex t.

Although the idea of storing the shortest-path map as a shortest-
path quadtree is conceptually simple, care must be taken in defining
it. The most straightforward approach is to partition the underlying
space into blocks so that each block is associated with just one re-
gion of the shortest-path map. The difficulty with this approach is
that it presumes that we know the boundaries of the regions, which,
as we will soon see, may not be worth the effort to compute. Of
course, we can determine the boundaries but even if we do this, we
still need to decide how to build an appropriate quadtree for the re-
gions. For example, boundaries of the regions could be represented
by a variant of an MX quadtree [13, 25] where boundary blocks
would be treated no differently than the interior of the region that
they bound. This is in contrast with the conventional MX quadtree
where boundary blocks are viewed as being distinct from the inte-
riors of the regions that they bound.

Therefore, instead, we adopt the following approach that as-
sumes that all vertices have been assigned a color corresponding
to the vertex wui j incident at the source vertex ui through which
the shortest path to them from ui passes. We now recursively de-
compose the underlying space into blocks and halt whenever all
vertices in the block have the same color. The fact that the shortest-
path quadtree is built by decomposing on the basis of the presence
and absence of vertices of the spatial network may result in some
empty blocks, which are assigned an unused color (e.g., white).
This has the side effect that it is possible for regions of a given
color to be noncontiguous due to intervening white blocks, thereby
resulting in more contiguous regions than the outdegree of the ver-
tex with which the shortest-path quadtree is associated. However,
as we discuss in Section 3, this is not really an issue for us as it
does not affect the efficiency of the point location algorithm. In
fact, there is really no need to keep track of the white blocks, and
thus we use a pointerless quadtree representation that only keeps
track of the nonempty leaf blocks (e.g., [7]). In this case, each of
these nonempty blocks is represented by its locational code (i.e., a
number formed by the concatenation of its size and the path to it
from the root). Blocks that are represented in this way are known
as Morton blocks [18], and access to a collection of such blocks is
facilitated by making use of a B+-tree access structure based on the
values of their locational codes. Lesser space savings are achieved
by not dispensing with all of the nonleaf blocks by using a variant
of a path-compressed PR quadtree (e.g., [3]) which ignores white
blocks where all but one of the siblings are white.

2.2 Best-first k Nearest Neighbor Algorithm
Given the shortest path quadtree representation of a spatial net-

work, we can trivially obtain the shortest path between any source
and destination pairs in real time. Similarly, other queries such
as range and region searches can also be easily handled using the
shortest path quadtree representation. We are interested in the k
nearest neighbor algorithm on spatial networks as it has impor-
tant applications to the provision of location-based services (e.g.,
“Google Local” and “Microsoft Live”). For example, suppose we
want to “find the 10 closest restaurants to 5600 Broadway St., Man-
hattan”. Note however that neither “Google Local” nor “Microsoft
Live” are presently able (at least not yet) to calculate the actual net-
work k neighbors to a query object in real time, and end up using
Euclidean distance between two objects u,v as an approximation
to the actual network distance between u and v. In the rest of this
section, we describe KNEARESTSPATIALNETWORK which works
in real time on a spatial network.

KNEARESTSPATIALNETWORK assumes the existence of a
search hierarchy T (i.e., a spatial index) on a set of objects S (usu-
ally points in the case of spatial networks) that make up the set of
objects from which the neighbors are drawn. For the sake of this
discussion, we assume that S, as well as the set of query objects Q,
is a subset of the vertices of the spatial network, although it is easy
to modify it to handle the more general case by keeping track of
two shortest paths to an object instead of just one.

In order to enable the computation of the range of network dis-
tances from query object q for the shortest paths that pass through
Morton block b, KNEARESTSPATIALNETWORK stores some ad-
ditional information with b. In particular, for a Morton block b in
the shortest-path quadtree (i.e., sq) for the shortest-path map mq, it
stores a pair of values, λ− (λ+), that correspond to the minimum
(maximum) value of the ratio of the network distance (i.e., through
the network) to the actual spatial distance (i.e., “as the crow flies”)
from q to all destination vertices in b. The ratios are computed
on a vertex-by-vertex basis—that is, a ratio is computed for each
destination vertex after which the minimums and maximums are
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computed. Thus the destination vertex for which the ratio attains
its minimum value does not have to be the same as the destination
vertex for which the ratio attains its maximum value.

At this point, let us elaborate on how the shortest-path quadtree
is used to compute network distances. In particular, we first show
how to compute the network distance between a query vertex q
and a destination vertex v. We start by finding the block b in the
shortest-path quadtree of q (i.e., sq) that contains v (i.e., a point lo-
cation operation). By multiplying the λ− and λ+ values associated
with b by the spatial distance between q and v, we obtain an interval
[δ−,δ+], termed the initial network distance interval, which con-
tains the range of the network distance between q and v. These two
actions are achieved by procedure GETNETWORKDISTINTERVAL
(not given here). Whenever it is determined that the initial network
distance interval [δ−,δ+] is not sufficiently tight (i.e., where tight-
ness means that the interval does not intersect an interval associated
with another neighboring object), an operation, termed refinement,
is applied that obtains the next vertex t in the shortest path between
q and v using procedure NEXTVERTEXSHORTESTPATH (not given
here). Having obtained t, we retrieve the shortest-path quadtree st
for t and then calculate a new network distance interval [δ−t ,δ+

t ] by
locating the Morton block bt of st that contains v. The network dis-
tance interval of the shortest path between q and v is now obtained
by summing the network distance from q to t (i.e., the weight of
the edge from q to t) and [δ−t ,δ+

t ]. Given a pair of vertices q and
v and a length k in terms of the number of vertices on the shortest
path between them, this process is reinvoked at most another k−2
times until reaching v.

We now show how to compute the network distance between a
query vertex q and a block b of the search hierarchy T . First, we
point out that in the case of a block, the concept of a network dis-
tance is complicated by the fact that there are usually many vertices
of the spatial network in the area spanned by b, and thus we need
to specify somehow the vertex (vertices) for which we are com-
puting the network distance. Instead, we compute a minimum net-
work distance for the block using procedure MINNETWORKDIST-
BLOCK (not given here). The minimum possible network distance
δ− of q from b is computed by intersecting b with sq, the shortest-
path quadtree of q, to obtain a set of intersecting blocks Bq of sq.
For each element bi of Bq, the associated λ−i value is multiplied
by the corresponding MINDIST(q,bi ∩ b) value to obtain the cor-
responding minimum shortest-path network distance µ−i from q to
bi. δ− is set to the minimum value of µ−i for the set of individual
regions specified by bi ∩ b. Note that the reason that block b can
be intersected by a varying number of blocks bi of Bq is that sq and
T need not be based on the same data structure (e.g., T can be an
R-tree), and even if they are both quadtree-based (e.g., T is a PR
quadtree [20, 25]), sq and T do not have to be in registration (i.e.,
they can have different origins, as can be seen in Figure 4).

b

b1 b2

b3 b4

b5

Figure 4: Example of the intersection of block b in a
quadtree search hierarchy T with blocks b1, b2, b3, b4,
b5 in the shortest-path quadtree.

There are several ways of implementing a best-first k nearest
neighbor algorithm. The simplest is to use the spatial network best-

first incremental nearest neighbor algorithm [27] and terminate it
once it has reported the first (i.e., nearest) k objects. This approach
makes use of a priority queue Queue that is initialized to contain
the root of the search hierarchy T and the root’s network distance
from the query object q. The principal difference between the spa-
tial network adaptation of the incremental nearest neighbor algo-
rithm and the conventional incremental nearest neighbor algorithm
is that, in the case of a spatial network, objects are enqueued using
their network distance interval (i.e., [δ−,δ+]) from the query object
q, instead of just their minimum spatial distance from q. However,
objects and blocks are ordered and removed from Queue in increas-
ing order of their minimum network distance from q.

The drawback of this incremental approach is that the priority
queue can be as large as the number of objects in the spatial net-
work should they all be at approximately the same distance from
q [10]. Our best-first k nearest neighbor algorithm given by proce-
dure KNEARESTSPATIALNETWORK overcomes this by using the
distance Dk from q of the kth candidate nearest neighbor ok to re-
duce the number of needless priority queue insertions operations by
enabling us to avoid enqueueing elements with a distance greater
than or equal to Dk from q (lines 57 and 66) which would never be
removed from Queue since the bound k on the number of neighbors
means that the algorithm terminates by then. However, such a mod-
ification incurs the cost of additional complexity in the algorithm
due to the need to check for it whenever insertions are made into
Queue. In particular, knowing ok means that we must keep track of
the set L of k candidate nearest objects that have been encountered
at any moment. Moreover, whenever it is determined that an inser-
tion is to be made into L, we must be able to identify and remove
the element in L with the largest distance. This is done most easily
by implementing L as a priority queue that is distinct from Queue,
which now contains the remaining types of elements. Thus, finding
the k nearest neighbors makes use of two priority queues.

Since the process of finding the nearest k neighbors relies on es-
timating the network distance of the objects from q, objects cannot
be inserted into L until their exact distances are known (i.e., they
have been fully refined). However, this means that the convergence
of Dk from its initial value of ∞ to its final value cannot begin to
take place until k of the objects have been fully refined. This can
take quite a bit of time. In order to speed up the convergence of Dk,
and hence reduce the potential size of the priority queue Queue,
we modify the definition of L so that L also stores partially refined
objects (as does Queue). In this case L also keeps track of the maxi-
mum of their associated network distance intervals (see [25] where
such an approach is used in a conventional non-network k nearest
neighbor algorithm to keep track of the maximum possible distance
at which a nearest neighbor can be found). In particular, given
object p with distance interval [δ−p ,δ+

p ], L stores the pair (p,δ+
p ))

when the network distance value of p from q is less than or equal
to Dk. Note that Queue also stores partially refined objects with the
difference that they are stored in Queue with their corresponding
network distance interval, while they are only stored in L with the
maximum of their corresponding network distance interval.

The actual mechanics of the algorithm are similar to the general
conventional best-first algorithm with the difference that objects
are associated with distance intervals instead of distances. When
a nonleaf block b is removed from Queue, the minimum network
distance is computed from q to each of the children of b, and they
are inserted into Queue with their corresponding minimum network
distances. When a leaf block b is removed from Queue, the objects
(i.e., points) in b are enqueued with their corresponding initial net-
work distance intervals, which are computed with the aid of the λ−
and λ+ values associated with b.

47



On the other hand, when the algorithm processes an object t (i.e.,
when the most recently removed element from Queue corresponds
to an object), it determines if the minimum network distance δ−t of
t is greater than or equal to that of Dk (the current distance of the
kth nearest neighbor of q), in which case it exits and returns L as the
set of k nearest neighbors because t and all other objects in Queue
or in blocks in Queue cannot be found at a distance from q which is
less than Dk. Otherwise, it checks to see if the maximum network
distance δ+

t of t is less than the minimum network distance δ−p of
the element p that is currently at the top of Queue. In this case,
further processing of t is halted and processing continues of p as
by Theorem 1 (given the end of this section) we can guarantee that
Dk ≥ δ+

t which means that t is one of the k nearest neighbors of
of q (otherwise we would need to refine t and enqueue it with the
refined distance interval). If δ+

t ≥ δ−p , then the algorithm attempts
to tighten the network distance interval for t by applying one step
of the refinement operation described earlier, and then enqueues
t with the updated network distance interval. Note that when the
network distance intervals associated with an object p in Queue
have been obtained via refinement, Queue must also keep track of
the most recently determined intermediate vertex v on the shortest
path from q to t and the network distance d from q to v along this
path. Observe also that no such information need be recorded for
blocks, and, in fact, each time we process a block, its associated
intermediate vertex and minimum network distance are the query
object q and 0, respectively.

In order to avoid having duplicate entries in L for a particular par-
tially refined object, each time a partially refined object is removed
from Queue for processing, we also attempt to remove it from L
(line 32), if it is there (i.e., the value of the maximum of its corre-
sponding distance interval is less than or equal to Dk), using proce-
dure REMOVEPRIORITYQUEUE (not given here). Similarly, once
its network distance interval has been refined, we attempt to insert
it into L with its associated maximum network distance provided
that this value is less than or equal to Dk (line 43) using procedure
INSERTL (not given here) which also updates Dk if necessary (i.e.,
if L contains k elements). However, we do not enqueue it in Queue
(line 46) if the value of its associated minimum network distance is
greater than or equal to Dk as this means that its further processing
will not result in a closer neighbor. Note that when the minimum
and maximum network distance values are equal to Dk, such an
action results in the object o being in L while no longer being in
Queue (lines 41–46) which is allowed as this means that there is no
longer a need to refine o further. Of course, if subsequently closer
objects to q are found than o at network distances less than Dk, then
o will be removed implicitly from L.

Procedure INSERTL makes use of procedure MAXPRIORITY-
QUEUE (not given here) to determine the element of a priority
queue with the maximum distance. MAXPRIORITYQUEUE is
equivalent to FRONTPRIORITYQUEUE when priority is given to el-
ements at a maximum distance. Note that INSERTL is also invoked
when we first encounter an object as part of a leaf block (line 59).

It is important to note that procedure KNEARESTSPATIALNET-
WORK takes advantage of the fact that for a given object o, there
is no need to refine its distance further once it is known that the
maximum network distance associated with o is less than the min-
imum network distance associated with other objects. This means
that when the algorithm terminates, the set L does not necessarily
contain the actual network distance from q of all of its constituent
objects. In other words, the identity and relative ranking (see The-
orem 2 at the end of this section) of the k nearest neighbors of q is
known, but their distance from q is not known. All that is known
are upper bounds on their distance from q. This is the price that
we pay for not refining the distances but it does result in a faster

convergence to the desired goal of finding the k nearest neighbors.
Of course, if the actual distances are desired for some of the k near-
est neighbors, then the algorithm can be modified to store in L the
identity of the intermediate vertex t on the path from q to neighbor
p (and the distance s from q to t) at the time at which the refine-
ment process for p was halted and then simply perform repeated
lookup operations on the shortest path quadtree to obtain the re-
maining shortest path to p and the distance to it. Note also that
if there are several objects at the maximum distance from q, then
we only report as many as necessary rather than all of them, which
could possibly result in reporting more than k objects.

1 procedure KNEARESTSPATIALNETWORK(q,k,S,T )
2 /* A best-first nonincremental algorithm that returns in priority queue

L the k nearest neighbors of q from a set of objects S on a spatial
network. S is organized using the search hierarchy T . It assumes
that each element in the priority queue Queue has four data fields E,
D, V, and I, corresponding to the nature of the entity x that Queue
contains (which can be an object, leaf block, or nonleaf block), the
network distance interval of x (just one value if x is not an object),
the most recently determined vertex v via refinement when x is an
object, and the network distance from q to v along the shortest path
from q to x when x is an object. Note that ENQUEUE takes four
arguments when the enqueued entity is an object instead of the usual
two. In both cases, the field names are specified in its invocation. */

3 value object q
4 value integer k
5 value object_set S
6 value pointer search_hierarchy T
7 integer Dk
8 priority_queue L, Queue
9 object o

10 vertex v
11 interval i
12 real s
13 pointer search_hierarchy e,ep
14 priority_queue_entry t
15 L← NEWPRIORITYQUEUE()
16 /* L is the priority queue containing the k nearest objects */
17 Queue← NEWPRIORITYQUEUE()
18 e←root of the search hierarchy induced by S and T
19 ENQUEUE([E =]e, [D =]0,Queue)
20 Dk ← ∞
21 while not ISEMPTY(Queue) do
22 t ← DEQUEUE(Queue)
23 e← E(t)
24 if ISOBJECT(e) then /* e is an object */
25 if MINNETWORKDISTINTERVAL(D(t)) ≥ Dk then
26 return L
27 elseif MAXNETWORKDISTINTERVAL(D(t))
28 ≥ MINNETWORKDISTINTERVAL(
29 D(FRONTPRIORITYQUEUE(Queue))) then
30 if MAXNETWORKDISTINTERVAL(D(t)) ≤ Dk then
31 /* Ensure one entry/object in L */
32 REMOVEPRIORITYQUEUE(e,L)
33 endif
34 v← NEXTVERTEXSHORTESTPATH(
35 e,SHORTESTPATHQUADTREE(V(t)))
36 /* NEXTVERTEXSHORTESTPATH does point location on e

in the SHORTESTPATHQUADTREE of V(t) and returns the
vertex v associated with the block or region containing V(t)
*/

37 s← I(t)+ EDGEWEIGHT(V(t),v)
38 /* EDGEWEIGHT(V(t),v): distance between V(t) and v */
39 i← s+ GETNETWORKDISTINTERVAL(
40 e,SHORTESTPATHQUADTREE(v))
41 if MAXNETWORKDISTINTERVAL(i) ≤ Dk then
42 /* Update L and Dk as necessary */
43 INSERTL(e,MAXNETWORKDISTINTERVAL(i),k,L,Dk )
44 endif
45 if MINNETWORKDISTINTERVAL(i) < Dk then
46 ENQUEUE([E =]e, [D =]i, [V =]v, [I =]s,Queue)

48



47 endif
48 endif
49 elseif D(t) ≥ Dk then /* e is a non-object */
50 return L
51 elseif ISLEAF(e) then /* e is a leaf block */
52 foreach object child element o of e do
53 /* Insert each object o in e in Queue along with the network dis-

tance interval of o, which is obtained by performing a point
location operation for the block containing o in the shortest-
path quadtree of q. In addition, insert each object o in L for
which the maximum distance from q is less than Dk. */

54 i← GETNETWORKDISTINTERVAL(
55 o,SHORTESTPATHQUADTREE(q))
56 if MINNETWORKDISTINTERVAL(i) < Dk then
57 ENQUEUE([E =]o, [D =]i, [V =]q, [I =]0,Queue)
58 if MAXNETWORKDISTINTERVAL(i) < Dk then
59 INSERTL(o,MAXNETWORKDISTINTERVAL(i),k,L,Dk )
60 endif
61 endif
62 enddo
63 else /* e is a nonleaf block */
64 foreach child element ep of e do
65 if MINNETWORKDISTBLOCK(q,ep) < Dk then
66 ENQUEUE([E =]ep,
67 [D =]MINNETWORKDISTBLOCK(q,ep),
68 Queue)
69 endif
70 enddo
71 endif
72 enddo

We now state a pair of theorems, whose proofs are omitted for
lack of space, that are needed in the demonstration of the correct-
ness of procedure KNEARESTSPATIALNETWORK.

THEOREM 1. If the maximum of the distance interval associ-
ated with the most recently removed element t from Queue is less
than the minimum of the distance interval associated with the ele-
ment p currently on the top of the Queue (i.e., δ+

t < δ−p ), then Dk
is always greater than or equal to the maximum of the distance in-
terval associated with t or formally Dk ≥ δ+

t , which implies that t
is one of the k nearest neighbors of q.

THEOREM 2. The output of KNEARESTSPATIALNETWORK is
a total ordering of the set of k nearest neighbors of q, even though
it is possible that their distance intervals were not fully refined.

3. EXECUTION TIME AND SPACE
REQUIREMENTS

In this section we analyze the execution time and space require-
ments of the INCNEARESTSPATIALNETWORK algorithm. The ex-
ecution time requirements of the algorithm are quite simple and are
captured by the following theorem.

THEOREM 3. The worst case execution time of the INC-
NEARESTSPATIALNETWORK algorithm is proportional to the
number of objects examined and the number of links on the shortest
paths to them from the query object q.

PROOF. This is proved easily by noting that the algorithm per-
forms a sequence of point location operations to locate the vertices
of the network that coincide with the positions of the objects. The
number of blocks in the search hierarchy T is proportional to the
number of objects in the search hierarchy. In the worst case, the
algorithm retrieves all of the blocks, and, in the worst case, all of
the shortest paths to the objects within them are explored. How-
ever, only these paths are explored. The worst case of the algo-
rithm arises when all nonleaf blocks of the search hierarchy are at

approximately the same distance from q, which is the worst case
of the conventional best-first incremental nearest neighbor algo-
rithm [10]. Therefore, in the worst case, the number of point lo-
cation operations is equal to the sum of the number of links in the
shortest paths from q to al of the objects in the spatial network. Of
course, such a worst case scenario (i.e., the retrieval of all objects)
will rarely exist as it depends on a particular positioning of q and
the objects being equidistant from it. Note that the complexity of
the point location operation itself is just the depth of the search hi-
erarchy which can be treated as a constant (i.e., the resolution of
the underlying decomposition space).

As we pointed out, the bulk of the storage is needed to store the
shortest-path quadtrees. Before obtaining the actual bound, we first
prove that the regions of the shortest-path map are connected.

THEOREM 4. The regions that make up the shortest-path map
mui of vertex ui are connected.

PROOF. This is proved easily by noting that from the point of
view of a graph, ignoring the spatial embedding of its vertices, all
vertices that make up each of the regions rui j are connected. There-
fore, the only way that the space spanned by one of these regions
associated with vertex w1 incident at u1 can be disconnected, say
consisting of two regions g1 and g2, is if the shortest path from u1
to some vertex v2 in g2 would “jump” from some vertex v1 in g1
over some region that is associated with a vertex w2 incident at u1
which is impossible as the spatial network is planar.

THEOREM 5. The shortest-path quadtree for vertex ui requires
O(pui + n) space, where pui is the sum of the perimeters of the
polygons corresponding to the regions that make up the shortest-
path map of ui and the map is embedded in a 2n×2n space.

PROOF. The shortest-path map mui partitions the underlying
space into Mui regions, where Mui is the out degree of ui and there
is one region rui j for each vertex wui j (1 ≤ j ≤ Mui ) that is con-
nected to ui by an edge eui j. From Theorem 4 we know that each
of rui j is connected. Now, for each region rui j of ui, apply an algo-
rithm to determine its boundary which results in a polygon oui j and
build an MX quadtree tui j for its edges. Assuming that tui j is em-
bedded in a 2n×2n space, we know from the Quadtree Complexity
Theorem (e.g., [13, 25]) that tui j requires O(pui j +n) space, where
pui j is the perimeter of oui j (also known as the dimension reduc-
ing property). Next, construct Xui , the union of the MX quadtrees
corresponding of the regions that make up mui which will require
O(pui + n) space, where pui is the sum of the perimeters of the
polygons corresponding to the regions that make up mui .

As we saw in Section 2, Sankaranarayanan et al. [27] make use
of another representation of the shortest-path quadtree which we
call Sui . Sui is built by processing the shortest-path map mui di-
rectly and recursively decomposing the underlying space that it
spans into blocks and halting the decomposition process whenever
all vertices in the block have the same color (i.e., a variant of the re-
gion quadtree). It is easy to see that this decomposition rule results
in no more blocks than the MX quadtree Xui as all vertices that are
in the interior of one of the regions of mui remain in interior blocks
of both the quadtree blocks of the appropriate tui j and the corre-
sponding blocks of Xui and Sui . However, for blocks that are on
the boundaries of regions, in the case of the shortest-path quadtree
Sui , there is no need to decompose the underlying space to the pixel
level. Therefore, we only need to ensure that the vertices lie in
separate blocks rather than also to ensure that the edges that con-
nect them lie in separate blocks. In other words, region boundaries
are represented implicitly in Sui in contrast to being represented ex-
plicitly in the MX quadtree Xui . Thus, the shortest-path quadtree
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Sui requires no more space than the MX quadtree,Xui , and therefore
the O(pui +n) space requirements of the MX quadtree Xui also hold
for the shortest-path quadtree Sui .

We now prove the main result.

THEOREM 6. Assuming a spatial network embedded in a
square grid so that each vertex occupies a random position within
a grid cell and that the boundaries forming the regions in the short-
est path quadtrees are monotonic, the total number of quadtree leaf
blocks in the shortest path quadtrees for a spatial network with N
vertices is O(N1.5).

PROOF. Embedding the N vertices in a square grid implies that
the grid width is

√
N grid cells. Assuming an outdegree of c per

vertex (c is usually much smaller than N for a spatial network cor-
responding to a road network for which c is usually 4 as the vertices
usually represent the intersection of two roads), the shortest path
map has just c polygonal regions. From Theorem 5 in Section 3 we
have that the space complexity of the shortest path quadtree corre-
sponding to the shortest path map is proportional to the sum of the
perimeters of the polygons that make up the shortest path map. We
now observe that the digitization using Bresenham’s algorithm [1]
of the line segments that make up the monotonic boundaries of
the polygons of the shortest path map means that the sum of their
lengths (i.e., perimeters) are no more than c times the length of the
width

√
N of the embedding space. Therefore, the space required

by the N shortest path quadtree for the spatial network of N vertices
is O(N1.5).

It should be clear that there are many possible quadtree variants
that could have been used to represent the shortest path map mui .
In the proof of Theorem 5, we used the MX quadtree Xui because
of the way in which its space requirements can be obtained. The
actual implementation of the shortest-path quadtree using Sui has a
lower number of blocks, but a formal derivation of a more precise
estimate is more complex. In any case, experiments with some
actual map data such as the Silver Spring map given in Figure 1(a),
which has 4333 vertices, found that, using Sui , the number of blocks
in each of the shortest-path quadtrees for all vertices in the map
ranged between 1 and 538 with an average of 128.3. This number
is significantly smaller than N = 4333 which is what we would need
had we we used adjacency lists.

An alternative quadtree representation can be obtained [23, 24,
28] after converting the collection of polygons described in the
proof of Theorem 5 to a polygonal map where the edges of the
individual polygons oui j that border adjacent polygons are merged
into one edge. The result can be represented using an MX quadtree,
which of course, will require less space than Xi as there are fewer
edges to decompose. However, the order of the space complexity
will still be the same. An alternative which will require even less
space is to use one of the members of the PM quadtree family [11,
26] or even the PMR quadtree [19]. Their space requirements have
been analyzed in [17] where the space requirements of the PMR
quadtree has been shown to be on the order of the number of edges
making up the polygonal subdivision and independent of the depth
of the quadtree (i.e., the resolution of the underlying space). Note
that in order to use these structures, we would have to determine the
actual polygons that correspond to the regions of the shortest-path
map as outlined in the proof of Theorem 5.

One of the interesting aspects of implementing the shortest-path
quadtree using Sui is that the resulting quadtree may have some
white (i.e., empty) blocks as can be seen in Figure 5. This oc-
curs when a nonleaf quadtree block contains vertices from dif-
ferent regions of the shortest-path map. In this case, it could be

said that the number of regions has increased if we also count the
white (i.e., white disconnected regions). Furthermore, it is possi-
ble that the quadtree blocks that make up the Mui regions in the
shortest-path map mui are not contiguous, at least if contiguity is
based on 4-adjacency. The example in Figure 5 shows the shortest-
path quadtree for query object q which consists of two regions,
one for vertex a consisting of the noncontiguous quadtree blocks
containing vertices a and d, and one for vertex b consisting of the
noncontiguous quadtree blocks containing vertices b and c. It is
important to observe that the complexity bound obtained in The-
orem 5 in terms of the perimeters of the regions comprising the
shortest-path map is not formulated in terms of the regions formed
by the quadtree blocks that make up Sui . Moreover note that these
additional regions (i.e., those comprised of the white blocks and
the noncontiguous 4-adjacent regions corresponding to the various
rui j) have no effect on the efficiency of the algorithm that deter-
mines the shortest paths in the incremental nearest neighbor pro-
cess as these white regions contain no vertices and thus they are
never accessed during the point location process which is the key
to finding the segments that form the shortest paths.

d
a

q

c

b

Figure 5: Example illustrating the presence of empty
blocks in the shortest-path quadtree of the shortest-path
map of query object q consisting of two regions: one for
vertex a consisting of the noncontiguous quadtree blocks
containing a and d, and one for vertex b consisting of
the noncontiguous quadtree blocks containing b and c.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our k-nearest

neighbor algorithm and a number of its variants. We also compare
them with two competing techniques—INE and IER of Papadias
et al. [21] that are based on the use of Dijkstra’s algorithm. They
differ on the extent to which they make use of Dijkstra’s algorithm
where INE uses it to find the neighbors as the graph is explored
while IER first finds the neighbors using Euclidean distance and
then uses Dijkstra’s algorithm to find the shortest paths to them and
hence the true network distance and then possibly seeks additional
neighbors [25]. All experiments were carried out on a Linux (2.4.2
kernel) quad 2.4 GHz Xeon server with one gigabyte of RAM. We
have implemented our algorithms using GNU C++. We tested our
algorithms on a large road network dataset corresponding to the
important roads in the eastern seaboard states of USA, consisting
of 91,113 vertices and 114,176 edges. The shortest path quadtree
of the vertices of this road network was precomputed and stored
on disk. The average number of the Morton blocks in the shortest
path quadtree associated with each vertex in the dataset is 353. The
algorithm uses an LRU based cache that can hold 5% of the disk
pages in the main memory.

We now briefly describe our experimental setup. We randomly
generated a set of objects S, which is indexed by a disk-based PMR
quadtree in all of the algorithms that we tested (it was also used by
the find_entities function in the INE method [21]). Even though,
our algorithm can handle objects in S that lie on an edge or a face
of a spatial network with equal ease, for the sake of simplicity, we
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assume that each of the objects in S is associated with a vertex on
the road network. We represent the size of S as a fraction of N, the
number of the vertices in the spatial network. We vary the size of S
between 0.001N to 0.2N. Moreover, in order to reduce some of the
mathematical instabilities involved in using statistics derived from
a random input dataset, we used the averages recorded by running
the queries on at least 50 random input datasets of the same size.
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Figure 6: Comparison of KNN and its variants with INE
and IER for (a) k = 10 and varying sizes of S, (b) S =
0.07N and varying k.

The first, and most important, experiments were designed to
compare KNEARESTSPATIALNETWORK (termed “KNN”) and a
number of its variants (KNN-M and KNN-I, as well as INN which
simply invokes KNN k times and hence has no need for priority
queue L and Dk is irrelevant as it is set to ∞) that are described
and evaluated in greater detail in the rest of this section, with the
IER and INE techniques of Papadias et al. [21] which are based
on the use of Dijkstra’s algorithm. These experiments are impor-
tant as they shed light on the fundamental goal of this paper which
is to demonstrate the efficacy of precomputing the shortest paths
between the various nodes in the spatial network so that the com-
plexity of the nearest neighbor process does not depend on the size
of the underlying spatial network (i.e., the decoupling principle).
We used the INE algorithm presented in [21] as in the interest of
simplicity we assumed that each of the objects in S from which
the neighbors are drawn is associated with a vertex. Without this
assumption, in order to obtain the right result, this variant would
need the modifications described in [25], which had the effect of
doubling the execution time of INE (although not shown here). Fig-
ure 6 shows the execution time taken by KNN and its variants as
well as INE and IER for varying values of k and S. We speak of
the behavior of KNN and its variants collectively as they all outper-
form INE and IER for small values of k, which is the most common
case in which these algorithms are used.

Figure 6a shows that KNN and its variants are at least one order
of magnitude and up to two orders of magnitudes faster than INE
and IER when using different object distributions for k = 10 which
is not atypical. As the size of S is increased, the execution time
of KNN and its variants, as well as that of INE and IER decrease
(although at some point the execution time of IER does start to
increase). KNN and its variants perform better than both INE and
IER even for large values of S = 0.2N, although for extremely large
values of S >> 0.2N, INE does start to perform better than KNN
and its variants. This is because for very large values of S, INE
is able to find k neighbors by just visiting a few edges around q
in the road network, as there are so many of them. However, as
we know well, most object datasets on road networks are sparse.
For example, even S = 0.2N is unrealistically large for a dataset of
post-offices, pizza shops or restaurants.

Figure 6b shows that KNN and its variants are several magni-
tudes faster than INE and IER for small values of k < 20 as k is
varied for a fixed object distribution S = 0.07N. In particular, we
see that that the various alternative variants of KNN (i.e., KNN-
I, INN, and KNN-M) provide a 3–8 times speed up over INE for
values of k ranging between 20 and 300, although KNN itself is
slower than INE for k > 50. As discussed earlier, typical nearest
neighbor queries tend to use smaller values of k for which KNN is
very well-suited, while the other variants of KNN are more suited
for larger values of k. So, depending on the nature of k and S, a
suitably designed query optimizer would be easily able to use the
appropriate variant of KNN. However, when k > 300, only KNN-
M is still faster than INE. Note that in these experiments IER was
always slower than the remaining algorithms.
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Figure 7: Total number of Morton blocks in the shortest
path quadtree encoding of random subgraphs extracted
from a large dataset, as well as a line with slope 1.5.

The second set of experiments tabulate the size of the shortest
path quadtree for a variety of spatial networks. We used a dataset
containing all major roads in the USA (i.e., more than 380,000 ver-
tices and 400,000 edges). By extracting random connected sub-
graphs from the road network, we were able to account for vari-
ations in the various roads such as rural versus urban, and spatial
network configurations that would lead to different storage require-
ments for the underlying shortest path quadtree. Given a spatial
network G, we determined the shortest path quadtree for each of its
N vertices and calculated the total number of Morton blocks com-
prising it and then obtained their sum M which is plotted in Figure 7
as a function of N. From Figure 7 we see that the ratio of the to-
tal number M of Morton blocks in the shortest path quadtrees for a
spatial network G to the number of vertices N in G for a wide range
of spatial networks of different sizes obeys M = K ·N1.5 (where K
is a constant) which validates Theorem 6. Recall from Section 3
that this has a very important ramification as it reduces the storage
complexity of of our approach of precomputing the O(N2) short-
est paths for the N vertices to O(N1.5) from from O(N3) as in the
worst case each of the O(N2) shortest paths can contain O(N) ver-
tices. This makes the shortest-path quadtree representation scal-
able as the total amount of space required for a spatial network has
been drastically reduced (i.e., by an order of magnitude equal to the
square root as N1.5 is the square root of N3).

The third set of experiments evaluate some proposed modifica-
tions of KNN that are designed to overcome some of its shortcom-
ings. Recall that KNN is a non-incremental best-first algorithm
that uses an upper bound estimate Dk on the maximum possible
distance to the kth nearest neighbor of a query object q. An equiva-
lent method of obtaining the k nearest neighbors of a query object is
to invoke an incremental best-first variant of KNN (termed “INN”)
k times—that is, INN is a variant of KNN that does not make use
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of the priority queue L and where Dk is set to ∞, thereby making it
irrelevant. The drawback of INN is that the priority queue Queue
may get as large as the number of objects. KNN-I is a variant of
INN that makes use of a variant of Dk and L to limit the size of the
priority queue Queue. KNN-I proceeds like INN except that when-
ever KNN-I encounters a leaf block at front of Queue that contains
objects, it inserts them into L which is ordered using the maximums
of the distance intervals of the objects, although these associated
maximum distance values are never updated even though they may
be subsequently refined. KNN-I differs from KNN in that KNN
also tries to insert objects into L when it encounters them at the
front of Queue. Once k different objects have been inserted into L,
KNN-I uses D0

k , the maximum distance value associated with the
objects in L, to avoid enqueueing any new object o for which the
minimum of its distance interval is ≥ D0

k (line 56).
We also introduce another variant of KNN (termed “KNN-M”)

that uses KMINDIST, a lower bound on the minimum of the dis-
tance interval of the kth nearest neighbor, in addition to D0

k , to ob-
tain the k nearest neighbors of q with the same motivation of reduc-
ing the size of the priority queue Queue. It proceeds in the same
manner as KNN-I with the modification that each time it encoun-
ters an object at the front of Queue, it enqueues it in an additional
priority queue Queue1 . Once it has removed the kth object p from
Queue and inserted it into Queue1 , it records the minimum (max-
imum) of p’s distance interval in KMINDIST (D0

k). Now, it keeps
on processing the elements in Queue and inserts the objects that it
finds in Queue1 until the minimum of the retrieved object is greater
than D0

k , at which time, processing of elements in Queue halts as
they can no longer be part of the set of k nearest neighbors. At this
point, Queue1 is guaranteed to contain all of the k nearest objects
as well as other objects. Now, process the element e of Queue1 the
minimum of whose distance interval is the smallest. If the max-
imum of e’s distance interval is less than KMINDIST, then report
e as one of the k nearest neighbors (in which case e is said to be
pruned against KMINDIST). If it is greater than KMINDIST, then
check if e’s distance interval overlaps that of the current element
at the front of Queue1, in which case, refine e and reinsert e into
Queue1 . This process is continued until k neighbors have been re-
ported. Note that a drawback of using KNN-M is that the objects
in the result set are not ordered with respect to q. In other words,
in comparison to KNN which establishes a total ordering of its k
nearest neighbors, KNN-M does not produce an ordered output.
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Figure 8: Percentage reduction in the size of the priority
queue Queue for KNN, KNN-I, and KNN-M, when com-
pared with INN for (a) k = 10, and varying sizes of S,
and (b) S = 0.07N and varying values of k.

Recall that one of the advantages of using KNN and its variants
over INN is that there is a reduction in the size of the priority queue
Queue, thereby leading to a reduction in the space needed to store
it which means that all priority queue operations are faster. Fig-

ure 8 shows the reduction in the maximum size of Queue for KNN,
KNN-I, and KNN-M when compared with INN. For k = 10 and
varying sizes of S, the maximum size of Queue for KNN, KNN-I,
and KNN-M is, on the average, at most 35% of the size of Queue
for INN as shown in Figure 8a. Figure 8b shows the effect of let-
ting k vary between 5 and 300 on the maximum size of Queue,
while keeping S fixed at 0.07N. It is clear from the Figure that
there is a large reduction in the size of Queue for smaller values of
k≤ 100. However, for larger values of k (e.g., k > 100), we observe
that the maximum size of Queue quickly reaches up to 100% of the
maximum size of Queue for INN. A possible explanation for this
observation is that as k increases, so does the region that is being
searched by the nearest neighbor algorithm. As S is obtained by
uniformly sampling the set of vertices, the larger the distance that
one moves away from q, the greater is the number of objects that
have overlapping distance intervals from q. Hence, pruning of the
objects using Dk becomes increasingly less effective.
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Figure 9: Percentage reduction in number of refinement

operations for KNN, KNN-I, and KNN-M, when com-
pared with INN for (a) k = 10, and varying sizes of S,
and (b) S = 0.07N and varying values of k.

Next, we examined the reduction in the number of refinement
operations when using the KNN algorithm and its variants in com-
parison to INN. Figure 9a is the result of letting k = 10 and varying
values of S. It shows that both KNN and KNN-I resulted in 10%
fewer refinements when compared with INN, while KNN-M re-
sulted in 40% fewer refinements. This means that up to 30% of the
refinements performed in KNN are devoted to establishing a total
ordering of the objects in the result set. Figure 9b is the result of
letting k vary between 5 and 300 and fixing S at 0.07N. It shows
that as k increases, the number of refinements performed by KNN-
M sharply decreases, while both KNN and KNN-I still perform up
to 90% of the refinements performed by INN.
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were pruned against the KMINDIST estimate and hence,
were added to the result set for (a) k = 10, and varying
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The observed large savings in the number of refinements per-
formed by KNN-M in Figure 9b with increasing k is largely due
to pruning more and more objects against the KMINDIST estimate.
Figure 10 shows that up to 90% of the nearest neighbors in the re-
sult set were pruned against the KMINDIST estimate. However, this
does not directly translate into an equivalent savings in the num-
ber of refinements performed by KNN-M because a nearest neigh-
bor of q whose initial distance interval from q partially overlaps
the KMINDIST estimate would still have to perform several refine-
ments before it can be pruned against the KMINDIST estimate.
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Figure 11: The values of D0
k and KMINDIST as a per-

centage of Dk for (a) S = 0.07N, varying values of k, and
(b) k = 10, varying sizes of S.

Both KNN-I and KNN-M use the D0
k estimate which is obtained

from the objects inserted into L in lines 58–60. Figure 11, shows
both D0

k and KMINDIST as a percentage of Dk, which was obtained
by running KNN on the same dataset while keeping k constant at 10
and varying S (Figure 11a) and also varying k and keeping S con-
stant at 0.07N (Figure 11b). From the Figure we see that D0

k is up to
20% larger than Dk which is a possible explanation of why the max-
imum sizes of the priority queues in Figure 8 for KNN, KNN-I, and
KNN-M are almost identical when compared to the maximum size
for INN. Moreover, we can see from Figure 11 that the KMINDIST
estimate is almost 90% of Dk which implies that many objects in
the result set would be pruned against the KMINDIST estimate.

Finally, we compare the relative performance of KNN and its
variants. Figures 12a,c show the execution time of KNN and its
variants, while Figures 12b,d show the corresponding I/O time.
Figures 12a,b show the effect of varying k on the performance of
KNN and its variants when S is fixed at 0.07N, while Figures 12c,d
show the effect of varying the size of S on the performance of KNN
and its variants when k is fixed at 10. Figures 12a,b also show (la-
beled “KNN-PQ”) the time spent by the KNN in updating Dk (i.e.,
deleting and inserting elements in L). We make the following ob-
servations on the nature of KNN and its variants.

• For small values of k ≤ 20, KNN has the fastest execution
time among all its variants. For larger values of k (k > 20),
the cost of updating (i.e., deleting and inserting objects into
L) Dk starts dominating KNN’s execution time and KNN be-
comes slower than all of its variants. From Figures 12a,b it
can be seen that for k = 50, the cost of updating Dk in KNN
uses up more than 50% of the execution time and is more
than the time for I/O operations.

• For large values of k (k > 20), KNN-I and INN can be used
instead of KNN.

• If the objects in the result set do not have to be sorted, then
KNN-M can be used. However, as KNN-M incurs extra CPU
time in computing the KMINDIST estimate, it may not be
well-suited for small values of k. In such cases, it may be
preferable to use KNN.
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Figure 12: The execution (a,c) and the IO (b,d) time of
KNN and its variants for (a,b) S = 0.07N, varying values
of k, and (c,d) k = 10, varying sizes of S.

• The size of S affects KNN and all its variants in a similar
manner, as seen in Figure 12c. The execution time of KNN
and its variants decreases as the size of S increases.

• The I/O time dominates the execution time of KNN and its
variants as each refinement operation may lead to a disk ac-
cess. KNN-M is able to reduce the number of refinements
by making use of the KMINDIST estimate, which results in
a lower I/O cost and hence, lower execution time as well.

5. CONCLUDING REMARKS
A key difference between our algorithm and those that are based

on Dijkstra’s algorithm (e.g., INE and IER of Papadias et al. [21])
is that in our algorithm the shortest paths between the various ver-
tices in the spatial network are only computed once, whereas in the
methods that are based on Dijkstra’s algorithm the shortest paths
between some vertices are computed repeatedly as the query object
and the number of sought neighbors change thereby causing the
reapplication of the algorithm. Thus, our algorithm is preferable
when many queries are made on a particular spatial network. On
the other hand, if only few queries will be made on a given spatial
network, then the methods based on Dijkstra’s algorithm may be
preferable especially if the desired neighbors are quite close to the
query object as the entire spatial network need not be explored.

Another advantage of our algorithm is that since the set of ob-
jects S from which the neighbors are drawn is decoupled from the
actual spatial network, the algorithm (and most importantly the
shortest-path quadtrees for the spatial network) can be used with
different sets of objects as long as the spatial network is unchanged.
For example, we can have separate search hierarchies for gas sta-
tions, markets, restaurants, etc. In this case, queries for the near-
est gas stations, markets, restaurants, etc. could be executed with
no change and the algorithm would be more efficient than had we
placed the gas stations, markets, and restaurants in one search hi-
erarchy as each time we found a neighbor we would need to check
its type and proceed to the next one if it was not the desired type.
In contrast, in the methods based on Dijkstra’s algorithm the dis-
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tinction between the vertices of the spatial network and the set of
objects from which the neighbors are drawn is not so clearcut.

It is important to note that although we restricted our spatial net-
works to be planar, this was only for the purpose of deriving the
order of its space requirements which depended on the regions of
the shortest-path map and corresponding shortest-path quadtree be-
ing disjoint and contiguous. However, the actual algorithms that we
presented work with both planar and nonplanar spatial networks. In
other words, the presence of tunnels and bridges will not affect the
correctness of the algorithms. In fact, the definition of the shortest-
path quadtree in terms of the vertices of the spatial network min-
imizes the effect of the nonplanarity as we saw that the resulting
regions may be noncontiguous regardless of planarity or lack of it,
although we did show that the order of the space requirements did
not change for this formulation in the planar case. An interesting
direction for future work is a derivation of the space requirements
for nonplanar spatial networks.

One can take advantage of the fact that our framework will most
commonly be deployed in an end user application that is mostly
concerned with nearby destinations. It is not unreasonable as most
people do not want to drive more than 50 miles to get to a restau-
rant. In this case, the shortest path quadtree will be much smaller,
and far less expensive to compute. Another strategy is to assume
that the shortest path between sources and destinations that are
more than X miles of each other must use a highway. Such a situ-
ation is a marriage between multiresolution techniques of [14] and
the shortest path quadtree techniques and could lead to substantial
speedups in computing shortest paths, although this may possibly
be at the expense of suboptimal shortest paths for distances spa-
tially farther than X miles.

Repeatability Assessment Result. Figures 6 and 8–12 have
been verified by the SIGMOD repeatability committee.
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